【题目】已知抛物线(m,n 为常数).
(1)若抛物线的的对称轴为直线 x=1,且经过点(0,-1),求 m,n 的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求 n 的取值范围;
(3)在(1)的条件下,存在正实数 a,b( a<b),当 a≤x≤b 时,恰好有,请直接写出 a,b 的值.
【答案】(1),
(2)
(3)
,
【解析】
(1)利用对称轴公式求出m的值,再用待定系数法求出n的值即可;
(2)设抛物线线上关于原点对称且不重合的两点坐标分别是和
代入解析式可得
,根据两点不重合可得
;
(3)由(1)可知抛物线解析式为,再根据
,当 a≤x≤b 时,恰好有
,即可得
,由二次函数的图象得到当
时,
;当
时,
,通过解方程求得a,b 的值.
(1)∵抛物线的的对称轴为直线
∴
解得
∴
将点(0,-1)代入中
解得;
(2)设抛物线线上关于原点对称且不重合的两点坐标分别是和
代入解析式可得
两式相加得
∴
∴;
∵当时,
解得
∴和
重合
∴
∴
(3)由(1)可知抛物线解析式为
∴
∵,当 a≤x≤b 时,恰好有
∴,即
∴
∵抛物线的对称轴是,且开口向下
∴当a≤x≤b 时,y随x的增大而减小
∴当时,
当时,
∵
∴
将①整理得
∵
∴
解得(舍去),
同理,由②得
∵
∴或
解得,
(舍去),
(舍去)
综上所述,,
.
科目:初中数学 来源: 题型:
【题目】甲、乙两地之间有一条笔直的公路,快车和慢车分别从甲、乙两地同时出发,沿这条公路匀速相向而行,快车到达乙地后停止行驶,慢车到达甲地后停止行驶,已知快车速度为.下图为两车之间的距离
与慢车行驶时间
的部分函数图像.
(1)甲、乙两地之间的距离是______km;
(2)点的坐标为(4,____),解释点
的实际意义.
(3)根据题意,补全函数图像(标明必要的数据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
(1)求DE与水平桌面(AB所在直线)所成的角;
(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勒洛三角形是以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形,如图所示,若等边三角形的边长为1,则该勒洛三角形的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,,顶点C的坐标为
,x反比例函数
的图象与菱形对角线AO交于点D,连接BD,当
轴时,k的值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为( )
A. (﹣2018,3)B. (﹣2018,﹣3)
C. (﹣2016,3)D. (﹣2016,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为( )
A.y=x2+
B.y=
x2+
C.y=x2+2D.y=
x2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=2x+2交x轴、y轴于点A、C,直线交x轴、y轴于点B、C,点P(m,1)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为( )
A.2B.2.5C.3D.3.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com