精英家教网 > 初中数学 > 题目详情
6.如图:O是矩形ABCD对角线AC、BD的交点,过点D作DE∥AC,过点C作CE∥BD,DE、CE相交于点E,连结OE交CD于点F,那么OE与DC垂直吗?请说明理由.

分析 先证明四边形OCED是平行四边形,再由矩形的性质得出OC=OD,证出四边形OCED是菱形,得出对角线互相垂直即可.

解答 解:OE⊥DC,理由如下:
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴OC=$\frac{1}{2}$AC,OD=$\frac{1}{2}$BD,AC=BD,
∴OC=OD,
∴四边形OCED是菱形,
∴OE⊥DC.

点评 本题考查了平行四边形的判定、矩形的性质、菱形的判定与性质;熟练掌握矩形的性质和菱形的判定与性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.如图是一个正方体的展开图,将它折叠成正方体后,“我”字的对面是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一项工程,甲独做要x天完成,乙独做要y天完成,则甲、乙合做完成工程需要的天数为(  )
A.x+yB.$\frac{x+y}{2}$C.$\frac{xy}{x+y}$D.$\frac{x+y}{xy}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在Rt△ABC中,∠C=90°,BC=8cm,AC=6cm,点P从点A出发,沿AC向点C以1cm/s的速度运动,点Q从点C出发沿CB向点B以2cm/s的速度运动,过点P作PD∥BC,交AB于点D,点P、Q同时出发,当其中一个点停止运动时,另一个点也随之停止运动.设P、Q的运动时间为t(s)(0<t<4)
(1)t为何值时,四边形PQBD为平行四边形?
(2)设四边形PQBD的面积为ycm2,求y与x的函数解析式
(3)是否存在某一时刻t,使S四边形PQBD:S△ABC=3:8?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)如图1,甲乙两楼之间的距离为40米,小华从甲楼顶测乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,试用含α、β的三角函数式子表示乙楼的高为多少米?
(2)如图2为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知第一象限内的点A在反比例函y=$\frac{4}{x}$上,第二象限的点B在反比例函数y=$\frac{k}{x}$上,且OA⊥OB,tanA=$\frac{1}{2}$,则k的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;
请你从中选择一个恰当的条件使四边形BECF是菱形,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个点A从数轴上表示-1的点开始,先向右移动6个单位长度,再向左移动8个单位长度,则此时这个点B表示的数是-3,A、B两点间的距离是2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,AB是⊙O的直径,点E是$\widehat{AD}$上的一点,∠DBC=∠BED.
(1)请判断直线BC与⊙O的位置关系,并说明理由;
(2)已知AD=5,CD=4,求BC的长.

查看答案和解析>>

同步练习册答案