精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.

(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.

【答案】
(1)

证明:连接OC,

∵OA=OC,

∴∠OAC=∠OCA,

∵AC平分∠BAE,

∴∠OAC=∠CAE,

∴∠OCA=∠CAE,

∴OC∥AE,

∴∠OCD=∠E,

∵AE⊥DE,

∴∠E=90°,

∴∠OCD=90°,

∴OC⊥CD,

∵点C在圆O上,OC为圆O的半径,

∴CD是圆O的切线


(2)

解:在Rt△AED中,

∵∠D=30°,AE=6,

∴AD=2AE=12,

在RtOCD中,∵∠D=30°,

∴DO=2OC=DB+OB=DB+OC,

∴DB=OB=OC= AD=4,DO=8,

∴CD= = =4

∴SOCD= =8

∵∠D=30°,∠OCD=90°,

∴∠DOC=60°,

∴S扇形OBC= ×π×OC2=

∵S阴影=SCOD﹣S扇形OBC

∴S阴影=8

∴阴影部分的面积为8


【解析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=SCOD﹣S扇形OBC即可得到答案.本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC⊥DE,解(2)的关键是求出扇形OBC的面积,此题难度一般.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:

AB=BC,②∠ABC=90°,AC=BD,ACBD中选两个作为补充条件,使ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是(  )

A. ①② B. ①③ C. ②③ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具商店销售功能相同的两种品牌的计算器,购买2A品牌和3B品牌的计算器共需156元;购买3A品牌和1B品牌的计算器共需122元。

1)求这两种品牌计算器的单价;

2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售。设购买个x个A品牌的计算器需要1元,购买B品牌的计算器需要2元,分别求出1、y2关于的函数关系式

3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.
(1)求tan∠DBC的值;
(2)求证:四边形OBEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在ABC中,AHBC,垂足为点H,若AB+BH=CH,ABH=70°,则∠BAC=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CF⊥ABF,BE⊥ACE,MBC的中点.

(1)若EF=3,BC=8,求△EFM的周长;

(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)2(x﹣3)=3x(x﹣3);
(2)x2﹣2x=2x+1.

查看答案和解析>>

同步练习册答案