精英家教网 > 初中数学 > 题目详情

如图所示,四边形ABCD为一正方形,E、F分别为BC、CD的中点,对角线AC与BD相交于O点,且AE与OB相交于G点,AF与OD相交于H点,下列说法正确的有(  )

    ①E点是线段BC的重心;②G点是△ABC的重心;

    ③H点是△ADC的重心;④O点是正方形ABCD的重心。

A.1个     B.2个      C.3个      D.4个

 

 

 

【答案】

D

【解析】本题考查了重心的定义

根据正方形的性质对各个结论进行分析从而得出最后答案.

线段的重心就是线段的中点,因此①是正确的;

根据正方形的性质可以得到O是AC的中点.同理E是BC的中点.则G是△ABC中心线的交点.即G是△ABC的重心;同理H是△ACD的重心.故②③④正确.

故选D.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连接FE分别交AB,CD于点H,G.
(1)观察图中有
2
对全等三角形;
(2)聪明的你如果还有时间,请在上图中连接AF,CE,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,四边形ABCD为⊙O的内接四边形,E为AB延长线的上一点,∠CBE=40°,则∠AOC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形ABCD中,E、F分别为AD、BC的中点.
(1)当AB∥CD而AD与BC不平行时,四边形ABCD称为
 
形,线段EF叫做其
 
,EF与AB+CD的数量关系为
 

(2)当AB与CD不平行,AD与BC也不平行时,猜想EF与AB+CD的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,E、F是AB、BC的中点,连接EC交DB、DF于G、H,则EG:GH:HC=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课标 读想练同步测试 七年级数学(下) 北师大版 题型:044

如图所示,四边形AB-CD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,试说明,无论点P在BC上如何移动,总有α+β=∠B.

查看答案和解析>>

同步练习册答案