【题目】某数学兴趣小组用高为1.2米的测角仪测量小树AB的高度,如图,在距AB一定距离的F处测得小树顶部A的仰角为50°,沿BF方向行走3.5米到G处时,又测得小树顶部A的仰角为27°,求小树AB的高度.(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC为Rt△,∠ACB=90°,点D为AB的中点,点E为边AC上的点,连结DE,过点E作EF⊥ED交BC于F,以DE,EF为邻边作矩形DEFG,已知AC=8.
(1)如图1所示,当BC=6,点G在边AB上时,求DE的长.
(2)如图2所示,若,点G在边BC上时,求BC的长.
(3)①若,且点G恰好落在Rt△ABC的边上,求BC的长.
②若(n为正整数),且点G恰好落在Rt△ABC的边上,请直接写出BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.点D是直线BC上方抛物线上一动点.
(1)求抛物线的解析式;
(2)如图1,连接BD、CD,设点D的横坐标为m,△BCD的面积为s.试求出s与m的函数关系式,并求出s的最大值;
(3)如图2,设AB的中点为E,作DF⊥BC,垂足为F,连接CD、CE,是否存在点D,使得以C、D,F三点为顶点的三角形与△CEO相似?若存在,请直接写出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④,其中所有正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有,则称点P为关于点A的勾股点.矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是关于点A的勾股点,若是△ADE等腰三角形,求AE的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为( )
A. 2B. 2﹣1C. D. +1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,M、N是△ABC的BC边上两点,且AB=AC,BM=CN
(1)如图1,证明:△ABN≌△ACM;
(2)如图2,当∠ANB=2∠B时,直接写出图中所有等腰三角形(△ABC除外)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:平面内,如果一个四边形的四个顶点到某一点的距离都相等,则称这一点为该四边形的外心.
(1)下列四边形:平行四边形、矩形、菱形中,一定有外心的是 ;
(2)已知四边形ABCD有外心O,且A,B,C三点的位置如图1所示,请用尺规确定该四边形的外心,并画出一个满足条件的四边形ABCD;
(3)如图2,已知四边形ABCD有外心O,且BC=8,sin∠BDC=,求OC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com