【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂线平分线交AB于点F,交BC的延长线于点E,连接AE,DF.
求证:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
【答案】见解析
【解析】
(1)由EF是AD的垂直平分线可得AE=DE,由此即可得到∠EAD=∠EDA;
(2)由EF是AD的垂直平分线可得AF=DF,由此可得∠FAD=∠FDA,由AD平分∠BAC可得∠FAD=∠CAD,从而可得∠FDA=∠CAD,由此即可得到DF∥AC;
(3)由三角形外角的性质可得∠EAC=∠EAD-∠CAD,∠B=∠EDA-∠BAD结合∠EAD=∠EDA,∠BAD=∠CAD即可得到∠EAC=∠B.
(1)∵ EF是AD的垂直平分线,
∴AE=DE,
∴∠EAD=∠EDA;
(2)∵ EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠FDA,
∵AD是∠BAC平分线,
∴∠FAD=∠CAD,
∴∠FDA=∠CAD,
∴DF//AC;
(3)∵∠EAC=∠EAD -∠CAD,∠B=∠EDA -∠BAD,∠BAD=∠CAD,∠EAD=∠EDA,
∴∠EAC=∠B.
科目:初中数学 来源: 题型:
【题目】新定义:对非负数x“四舍五入”到个位的值记为<x>,
即当n为非负数时,若,则<x>=n.
例如<0>=<0.49>=0,<0.5>=<1.49>=1,<2>=2,<3.5>=<4.23>=4,…
试回答下列问题:
(1)填空: <9.6>=_________;
如果<x>=2,实数x的取值范围是________________.
(2)若关于x的不等式组的整数解恰有4个,求<m>的值;
(3)求满足的所有非负实数x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面说法正确的是( ).
A.一个袋子里有100个同样质地的球,小华摸了8次球,每次都只摸到黑球,这说明袋子里面只有黑球
B.某事件发生的概率为0.5,也就是说,在两次重复的试验中必有一次发生
C.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为
D.某校九年级有400名学生,一定有2名学生同一天过生日
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y= 与y=m﹣x的图象的一个交点是A(2,3),其中k、m为常数.
(1)求k、m的值,画出函数的草图.
(2)根据图象,确定自变量x的取值范围,使一次函数的函数值大于反比例函数的函数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了调查学生每天零花钱情况,对我校初二学年某班 50 名同学每天零花钱情况进行 了统计,并绘制成下面的统计图.
(1)直接写出这 50 名同学零花钱数据的众数是_____;中位数是________.
(2)求这 50 名同学零花钱的平均数.
(3)该校共有学生 3100 人,请你根据该班的零花钱情况,估计这个中学学生每天的零花 钱不小于 30 元的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】回答下列问题:
(1)计算:①(x+2)(x+3)= ;② (x +7)( x-10)= ;③(x-5)(x-6)= .
(2)总结公式:(x+a)(x+b)= .
(3)已知a,b,m均为整数,且(x+a)(x+b)=x2+mx+6,求m的所有可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com