精英家教网 > 初中数学 > 题目详情

【题目】为了加快我省城乡公路建设,我省计划“十三五”期间高速公路运营里程达1000公里,进一步打造城乡快速连接通道,某地计划修建一条高速公路,需在小山东西两侧A,B之间开通一条隧道,工程技术人员乘坐热气球对小山两侧A、B之间的距离进行了测量,他们从A处乘坐热气球出发,由于受西风的影响,热气球以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为多少米?

【答案】解:过A作AD⊥BC交BC于点D,

由题意AC=30×25=750,∠B=30°,∠BCA=75°﹣∠B=75°﹣30°=45°,
在Rt△CDA中,sin∠BCA=
所以AD=AC×sin∠BCA=750× =375
在Rt△BDA中,∠B=30°,AB=2AD=750 米,
所以AB两地之间的距离为750 米.
【解析】过A作AD⊥BC交BC于点D,首先利用速度和时间求得AC的长,然后利用锐角三角函数求得AD的长,从而利用AB=2AD求得AB的长.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.
(1)A比B后出发几个小时?B的速度是多少?
(2)在B出发后几小时,两人相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么 的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的 ,则cosA=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.(﹣2)3=8
B. =±2
C. =﹣2
D.|﹣2|=﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:如图,已知抛物线y=﹣x2+2x+3的图象与x轴交于点A,B(A在B的右侧),与y轴交于点C,对称轴与抛物线交于点D,与x轴交于点E.

(1)求点A,B,C,D的坐标;
(2)求出△ACD的外心坐标;
(3)将△BCE沿x轴的正方向每秒向右平移1个单位,当点E移动到点A时停止运动,若△BCE与△ADE重合部分的面积为S,运动时间为t(s),请直接写出S关于t的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.

(1)求证:四边形ABFE是平行四边形.
(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,
①当t为何值时,ABFE是菱形?请说明你的理由.
ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为
A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)画出△ABC关于y轴对称的△A1B1C1
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2 , 请在图中画出△A2BC2 , 并求出线段BC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )

A.BC
B.CE
C.AD
D.AC

查看答案和解析>>

同步练习册答案