精英家教网 > 初中数学 > 题目详情
11.如图是由4个边长为1的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多可以作出8条长度为$\sqrt{5}$的线段.

分析 结合图形,得到1,2,$\sqrt{5}$是一组勾股数,如图所示,找出长度为$\sqrt{5}$的线段即可.

解答 解:根据勾股定理得:$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
即1,2,$\sqrt{5}$是一组勾股数,
如图所示,在这个田字格中最多可以作出8条长度为$\sqrt{5}$的线段.
故答案为:8

点评 此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.已知$\sqrt{a-2}$+|b+3|=0,则P(-a,-b)的坐标为(  )
A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在四边形ABCD中,点O是AC的中点,
(1)若AB∥CD,求证:△OAB≌△OCD;
(2)在问题(1)中,若AC=BD,则四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知直线y=-$\frac{1}{2}$x+2与坐标轴交于A、B两点,抛物线y=-x2+bx+c与x轴交于A、C两点,与y轴交于点B.
(1)求b、c的值.
(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E.
①点P从原点O出发,沿x轴正方向以1个单位/秒的速度运动,设运动时间为t,过点P作x轴的垂线与直线AB交于点F,与抛物线交于点G,当t为何值时,FG:DE=1:2?
②将抛物线向上平移m(m>0)个单位后与y轴相交于点B′,与直线x=2相交于点E′,当E′O平分∠B′E′D时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列二次根式中能与$\sqrt{2}$合并的二次根式的是(  )
A.$\sqrt{12}$B.$\sqrt{\frac{3}{2}}$C.$\sqrt{\frac{2}{3}}$D.$\sqrt{18}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)请你根据下面画图要求,在图①中完成画图操作并填空.
如图①,△ABC中,∠BAC=30°,∠ACB=90°,∠PAM=∠A.
操作:(1)延长BC.
(2)将∠PAM绕点A逆时针方向旋转60°后,射线AM交BC的延长线于点D.
(3)过点D作DQ∥AB.
(4)∠PAM旋转后,射线AP交DQ于点G.
(5)连结BG.
结论:$\frac{AB}{AG}$=$\frac{1}{2}$.
(2)如图②,△ABC中,AB=AC=1,∠BAC=36°,进行如下操作:将△ABC绕点A按逆时针方向旋转α度角,并使各边长变为原来的n倍(n>1),得到△AB′C′.当点B、C、B′在同一条直线上,且四边形ABB′C′为平行四边形时(如图③),求a和n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.在同一个平面内,不重合的两条直线的位置关系是(  )
A.平行B.相交C.平行或相交D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
 销售时段 销售数量 销售收入
 A种型号 B种型号
 第一周 3台 5台 18000元
 第二周 4台 10台 31000元
(1)求A,B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

同步练习册答案