【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.
(1)求证:BD=CD.
(2)若弧DE=50°,求∠C的度数.
(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.
【答案】(1)详见解析;(2)65°;(3).
【解析】
(1)连接AD,利用圆周角定理推知AD⊥BD,然后由等腰三角形的性质证得结论;
(2)根据已知条件得到∠EOD=50°,结合圆周角定理求得∠DAC=25°,所以根据三角形内角和定理求得∠ABD的度数,则∠C=∠ABD,得解;
(3)设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,根据射影定理知:BD2=BFAB,据此列出方程求得x的值,最后代入弧长公式求解.
(1)证明:如图,连接AD.
∵AB是圆O的直径,
∴AD⊥BD.
又∵AB=AC,
∴BD=CD.
(2)解:∵弧DE=50°,
∴∠EOD=50°.
∴∠DAE=∠DOE=25°.
∵由(1)知,AD⊥BD,则∠ADB=90°,
∴∠ABD=90°﹣25°=65°.
∵AB=AC,
∴∠C=∠ABD=65°.
(3)∵BC=8,BD=CD,
∴BD=4.
设半径OD=x.则AB=2x.
由AF=3BF可得AF=AB=x,BF=AB=x,
∵AD⊥BD,DF⊥AB,
∴BD2=BFAB,即42=x2x.
解得x=4.
∴OB=OD=BD=4,
∴△OBD是等边三角形,
∴∠BOD=60°.
∴弧BD的长是:=.
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)请画出△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.
(1)求、的值;
(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;
(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上.
(1)求反比例函数的表达式;
(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O'A'B'.当这个函数的图象经过△O'A'B'一边的中点时,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从下列4个命题中任取一个:①三点确定一个圆:②平分弦的直径平分弦所对的弧:③弦相等,所对的圆心角相等;④在半径为4的圆中,30°的圆心角所对的弧长为,是真命题的概率是( ).
A.1B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为2,连接,点是线段延长线上的一个动点,,点是与线段延长线的交点,当平分时,______(填“>”“<”或“=”):当不平分时,__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com