精英家教网 > 初中数学 > 题目详情

【题目】如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,则∠AED等于多少度?

②若∠A=20°,∠D=60°,则∠AED等于多少度?

③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.

(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)

【答案】(1)①∠AED=70°;

②∠AED=80°;

猜想:AED=EAB+EDC,证明见解析

(2)点P在区域①时,∠EPF=360°﹣(∠PEB+PFC);

点P在区域时,EPF=PEB+PFC;

点P在区域时,EPF=PEB﹣PFC;

P在区域④时,∠EPF=PFC﹣∠PEB

【解析】(1)①根据图形猜想得出所求角度数即可;
②根据图形猜想得出所求角度数即可;
③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;
(2)分四个区域分别找出三个角关系即可.

解:(1)①∠AED=70°

②∠AED=80°

③猜想:∠AED=EAB+EDC

证明:延长AEDC于点F

ABDC

∴∠EAB=EFD

∵∠AEDEDF的外角,

∴∠AED=EDF+EFD=EAB+EDC

2)根据题意得:

P在区域①时,∠EPF=360°﹣(∠PEB+PFC);

P在区域②时,∠EPF=PEB+PFC

P在区域③时,∠EPF=PEB﹣∠PFC

P在区域④时,∠EPF=PFC﹣∠PEB

“点睛”此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A,点B是数轴上原点O两侧的两点,其中点A在负半轴上,且满足AB12OB2OA

1)点AB在数轴上对应的数分别为

2)点AB同时分别以每秒2个单位长度和每秒4个单位长度的速度向左运动.

经过几秒后,OA3OB

AB在运动的同时,点P以每秒2个单位长度的速度从原点向右运动,经过几秒后,点ABP中的某一点成为其余两点所连线段的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2105的坐标为_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的分式方程

1)若方程的增根为x=1,求m的值

2)若方程有增根,求m的值

3)若方程无解,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 = ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论: ①△ADF∽△AED;②FG=2;③tan∠E= ;④SDEF=4
其中正确的是(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个直角∠AOB∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD

∠AOC∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线. 其中正确的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图数轴上两点AB所对应的数分别为-31,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.

1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;

2)若点P比点Q1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;

3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为(
A.4 cm
B.3 cm
C.5 cm
D.4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(列方程(组)及不等式解应用题)

水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)

(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?

(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?

查看答案和解析>>

同步练习册答案