精英家教网 > 初中数学 > 题目详情
1.如图,在△ABC中,AB=5cm,BC=8cm,BC边上的中线AD=3cm,求∠ADC的度数.

分析 根据题意可知:BD=4,由勾股定理定理逆定理即可求出∠ADC的度数

解答 解:∵AD是△ABC的中线,
∴BD=$\frac{1}{2}$BC=4,
∵AB2=25,
BD2+AD2=25
∴AB2=BD2+AD2
∴∠ADB=90°,
∴∠ADC=90°

点评 本题考查勾股定理逆定理,解题的关键是求出BD的长度为4,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2$\sqrt{2}$个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是(  )
A.(3,-1)B.(1,-3)C.(-2,-1)D.(2$\sqrt{2}$+1,2$\sqrt{2}$+1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.完成下面的证明.
(1)如图(1),已知∠B=∠CGF,∠DGF=∠F,求证:AB∥EF.
证明:∵∠B=∠CGF,
∴AB∥CD(同位角相等,两直线平行)
∵∠DGF=∠F,∴CD∥EF(内错角相等,两直线平行)
∴AB∥EF(平行于同一条直线的两条直线平行)
(2)如图(2),点D、E、F分别是△ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.
求证:∠FDE=∠A.
证明:∵DE∥BA,
∴∠FDE=∠BFD(两直线平行,内错角相等)
∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等)
∴∠FDE=∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,△ABC中,点D为BC中点,点E为AD中点,点F为CE中点,若S△ABC=10cm2,则S△BEF=2.5cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-4,8),对角线AC⊥x轴于点C,点D在y轴上,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,MN是⊙O的直径,MN=10,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为5$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知一次函数y=-mx+4和y=3x-n的图象交于点P(3,1),则关于x的方程组$\left\{\begin{array}{l}{mx+y=4}\\{3x-y=n}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线y1=kx+b与双曲线y2=$\frac{m}{x}$交于A,B两点,它们的横坐标分别为1和5.
(1)当m=5时,①求直线AB的解析式;
②连接AO,BO,求△AOB的面积;
(2)当y1>y2时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.一只小狗在如图所示的矩形草地ABCD内自由的玩耍,点P是矩形的边CD上一点,点E、点F分别为PA,PB的中点,连接EF,则这只小狗跑到△PEF内的概率是$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案