精英家教网 > 初中数学 > 题目详情
15、在边长为1的正方形网络格中,由4个相同八边形组成“十字”形图案,小明为了发现其图案的变化过程,以八边形A为“基本图形”设计了以下三种变换方案(图中EF,GH分别为水平线AB和铅垂线CD的夹角的平分线),请你将他的方案补充完整:
(1)把“基本图形A”绕点O顺时针连续旋转3个
90
度得到图案C,B,D;
(2)把“基本图形A”分别以直线
EF、GH、EF
为对称轴,顺时针依次翻转得到图案C、B、D.
(3)把“基本图形A”沿
从A至B
的方向平移
7
个单位长度得到“图案B”,将“图案C”用同样的方法平移得到“图案D”.
(4)求八边形A的内角和.
分析:(1)(2)(3)根据各图形的位置即可作出判断;
(4)根据内角和=(n-2)×180°计算即可.
解答:解:根据图形可得:
(1)90°;
(2)EF、GH、EF;
(3)从A到B,7;
(4)内角和为(8-2)•180°=1080°
故答案为:90°;EF、GH、EF;从A到B,7.
点评:本题考查图形的变换关系及多边形的内角和公式,难度不大,注意仔细观察各图形的位置.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而
 
(填“增大”或“减小”).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有
4
4
个.
(2)将线段AB沿x轴向右平移2格得线段CD,请你求出线段CD所在的直线函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,A、B、C、D均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)若把直线y=kx+b中的k叫做直线的斜率,那么直线AB和直线AD的斜率有什么关系?直线AB和直线CD的斜率有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.

1.求线段AB所在直线的函数关系式,并写出当0≤y≤2时,自变量x的取值范围;

2.将线段AB绕点B逆时针旋转90°,得到线段BC,若直线BC的函数关系式为y=kx+b,则y随x的增大而      (填“增大”或“减小”).

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图8,在平面直角坐标系中,均在边长为1的正方形网格格点上.

(1)求线段所在直线的函数解析式,并写出当时,自变量的取值范围;

(2)将线段绕点逆时针旋转,得到线段,请在指定位置画出线段.若直线的函数解析式为,则的增大而             (填“增大”或“减小”).

查看答案和解析>>

同步练习册答案