精英家教网 > 初中数学 > 题目详情
17.下列各式:$\frac{1}{8}(1-x)$,$\frac{4x}{π-3}$,$\frac{{{x^2}-{y^2}}}{2}$,$\frac{1}{x}+x$,$\frac{{5{x^2}}}{x}$,其中分式共有(  )
A.2个B.3个C.4个D.5个

分析 依据分式的定义回答即可.

解答 解:$\frac{1}{8}(1-x)$,分母中不含字母,不是分式;
$\frac{4x}{π-3}$π是数字,不是字母,故分母中不含字母,不是分式;
$\frac{{{x^2}-{y^2}}}{2}$分母中不含字母,不是分式;
$\frac{1}{x}+x$的分母中含有字母,是分式;
$\frac{{5{x^2}}}{x}$的分母中含有字母,是分式.
故选:A.

点评 本题主要考查的是分式的定义,掌握分式的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在一个不透明的箱子里,装有红球2个、黑球1个,它们除了颜色之外没有其他区别.
(1)随机地从箱子里取出1个球,则取出红球的概率是多少?
(2)随机地从箱子里取出1个球不放回,继续再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若x=-3是方程2(x-m)=6的解,则m的值为-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=$\frac{{k}_{2}}{x}$的图象交于点A(-3,2)和点B(1,m),连接BO并延长与反比例函数y=$\frac{{k}_{2}}{x}$的图象交于点C.
(1)求一次函数y=k1x+b和反比例函数y=$\frac{{k}_{2}}{x}$的表达式;
(2)是否在双曲线y=$\frac{{k}_{2}}{x}$上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若(x+1)0-2(x-2)-2有意义,则x的取值范围是x≠-1且x≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是(  )
A.-1≤x≤1B.-$\sqrt{2}$≤x≤$\sqrt{2}$C.0≤x≤$\sqrt{2}$D.x>$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.
(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.
①依题意补全图1;
②试判断AE与BD的数量关系,并证明你的结论;
(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;
(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知2015xn+7和-2017x2m+3是同类项,则(2m-n)2=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.利用“等边对等角”
如图,AB=AD,CD∥AB,CE∥AD.
求证:△CDE是等腰三角形.

查看答案和解析>>

同步练习册答案