精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,点A的坐标为(-2,0),⊙P刚好与x轴相切于点A,⊙P交y的正半轴于点B,点C,且BC=4.
(1)求半径PA的长;
(2)求证:四边形CAPB为菱形;
(3)有一开口向下的抛物线过O,A两点,当它的顶点不在直线AB的上方时,求函数表达式的二次项系数a的取值范围.

【答案】分析:(1)作BC的弦心距PD,则PD的长等于2,BD=BC,利用勾股定理即可求出;
(2)AP与BC平行且相等,所以是平行四边形,又AP=PB,所以是菱形;
(3)先求出点B的坐标(0,6),写出直线AB的解析式,再求出x=-时的函数值大于抛物线的最大值,求解不等式.
解答:(1)解:作PD⊥BC于D,根据题意PB===4,
∴半径PA=PB=4.

(2)证明:∵⊙P刚好与x轴相切于点A
∴PA⊥x轴,
∴PA∥BC,
∵PA=BC=4,
∴四边形CAPB是平行四边形.
又∵AP=PB,
∴平行四边形CAPB为菱形.

(3)解:∵BD=2,
∴点B的坐标为B(0,6),
设直线AB的解析式为y=kx+b则
解得
∴解析式是y=x+6.
当x=-时,y=3,
此时设抛物线为y=ax2+bx+c,
根据题意
解得b=2a,
=-3a<3,
解得a>-1,
又∵抛物线开口向下,
∴-1<a<0.
点评:本题考查了菱形的判定和待定系数法求函数解析式,还有二次函数的最值问题,数形结合也是考查点之一,所以本题综合性较强,对学生要求比较高,因此要求在平时的学习中要不断培养自己的解题能力,提高数学素养.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案