精英家教网 > 初中数学 > 题目详情
在等边△ABC所在平面内有一点P,使得△PBC、△PAC、△PAB都是等腰三角形,则具有该性质的点有(  )
A.1个B.7个C.10个D.无数个
作三边的中垂线,交点P肯定是其中之一,以B为圆心,BA为半径画圆,交AC的中垂线于P1、P2两点,作△P2AB、△P2BC、△P2AC,它们也都是等腰三角形,因此P1、P2是具有题目所说的性质的点;
以A为圆心,BA为半径画圆,交AC的中垂线于点P3、P3也必具有题目所说的性质.
依此类推,在△ABC的其余两条中垂线上也存在这样性质的点,所以这些点一共有:
3×3+1=10个.

故选:C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠A=40°,当∠B=______时,△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.
(2)在所画图中,
①线段OE与CD之间有怎样的数量关系:______.
②求证:△CDF为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得∠NAC=43°,∠NBC=86°,问海岛B与灯塔C相距多远?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若正三角形的边长为2
5
cm,则这个正三角形的面积是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将一等边三角形剪去一个角后,∠1+∠2=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知BD为等边△ABC的中线,DE⊥AB于点E,若BC=3,则AE=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学课上,李老师出示了如下框中的题目.

小明与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE______DB(填“>”,“<”或“=”).

(2)一般情况,证明结论:
如图2,过点E作EFBC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)
(3)拓展结论,设计新题:
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,则CD的长为______(请直接写出结果).

查看答案和解析>>

同步练习册答案