精英家教网 > 初中数学 > 题目详情
如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)

【答案】分析:(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.
(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.
解答:解:(1)如图,作AD⊥BC于点D.               (1分)
Rt△ABD中,
AD=ABsin45°=4×=2.                  (2分)
在Rt△ACD中,
∵∠ACD=30°,
∴AC=2AD=4≈5.6.                         (3分)
即新传送带AC的长度约为5.6米;(4分)

(2)结论:货物MNQP应挪走.                  (5分)
解:在Rt△ABD中,BD=ABcos45°=4×=2.  (6分)
在Rt△ACD中,CD=ACcos30°=2
∴CB=CD-BD=2-2=2(-)≈2.1.
∵PC=PB-CB≈4-2.1=1.9<2,(7分)
∴货物MNQP应挪走.                          (8分)
点评:应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNPQ是否需要挪走,通过计算说明理由.(计算结果保留两个有效数字,参考数据:
2
≈1.41,
3
≈1.73,
5
≈2.24,
6
≈2.45)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是某货站传送货物的平面图,为了提高传送过程的安全性,工人将传送带与地面的夹角由45°改为30°,原传送带AB的长度为4米.
(1)求新传送带AC的长度;
(2)若要在货物着地点C的左侧留出2米的通道,距离B点4米的货物RQPS是否需要挪走,说明理由.(结果保留一位小数参考数据:
2
≈1.41  
3
≈1.73 
6
≈2.45)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:
2
≈1.41,
3
≈1.73,
5
≈2.24,
6
≈2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4
2
米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物MNQP是否需要挪走,并说明理由.(
2
≈1.4,
3
≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图是某货站传送货物的平面示意图,AD与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°,因此传送带的落地点B到点C向前移动了2米.
(1)求点A与地面的高度;
(2)如果需要在货物着地点C的左侧留出2米,那么请判断距离D点14米的货物Ⅱ是否需要搬走,并说明理由.
(参考数据:sin37°取0.6,cos37°取0.8,tan37°取0.75,
3
取1.73)

查看答案和解析>>

同步练习册答案