精英家教网 > 初中数学 > 题目详情
(2010•资阳)如图,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°.设动点P、Q、R在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行.
(1)当点P在AB边上时,在图中画出一个符合条件的△PQR (不必说明画法);
(2)当点P在BC边或CD边上时,求BP的长.
分析:(1)根据平行线的性质,就可以画出一个符合条件的三角形.
(2)分两种情况进行讨论,当P在CD边上时,由题意,PR∥BC,设PR=x.可证四边形PRBQ是正方形,由条件证明△CPQ∽△CDE,可以求出PR的值,再解直角三角形就可以求出BP的值;当P在BC边上,依题意可知RQ∥BC.,过Q作QF⊥BC,易证△BRP≌△FQP,则PB=PF.易证四边形BFQR是矩形,可以证明△CQF∽△CDE,从而得出结论.
解答:解:(1)如图△PQR是符合条件的三角形.
 
(2)①当P在CD边上时,由题意,PR∥BC,设PR=x.可证四边形PRBQ是正方形,
∴PR=PQ=BQ=x.
过D点作DE∥AB,交BC于E,易证四边形ABED是矩形.
∴AD=BE=1,AB=DE=3.又 PQ∥DE,
∴△CPQ∽△CDE,∴
PQ
DE
=
CQ
CE

x
3
=
6-x
5


∴x=
9
4
,即BP=
9
4
2

②当P在BC边上,依题意可知RQ∥BC.
过Q作QF⊥BC,易证△BRP≌△FQP,则PB=PF.
易证四边形BFQR是矩形,
设BP=x,则BP=BR=QF=PF=x,BF=RQ=2x.
∵QF∥DE,
∴△CQF∽△CDE,
QF
DE
=
CF
CE

x
3
=
6-2x
5

∴x=
18
11
点评:本题考查了相似三角形的判定与性质,等腰直角三角形的性质,直角梯形的性质及矩形和正方形的性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知直线l:y=kx+b与双曲线C:y=
m
x
相交于点A(1,3)、B(-
3
2
,2),点A关于原点的对称点为P.
(1)求直线l和双曲线C对应的函数关系式;
(2)求证:点P在双曲线C上;
(3)找一条直线l1,使△ABP沿l1翻折后,点P能落在双曲线C上.
(指出符合要求的l1的一个解析式即可,不需说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,A为⊙O上一点,从A处射出的光线经圆周4次反射后到达F处.如果反射前后光线与半径的夹角均为50°,那么∠AOE的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2-3x,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知直线y=2x+2交y轴于点A,交x轴于点B,直线l:y=-3x+9
(1)求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2)若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
(3)在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F.在抛物线上是否存在点H,使直线l、FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的
12
?若存在,求点H的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案