精英家教网 > 初中数学 > 题目详情
(2003•宁波)已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),O是原点.
(1)求这条抛物线的解析式;
(2)设此抛物线与x轴的交点为A,B(A在B的左边),问在y轴上是否存在点P,使以O,B,P为顶点的三角形与△AOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】分析:(1)因为抛物线的顶点坐标为(4,-1),所以可设其顶点式,再把点C(0,3)代入即可求出未知数的值从而求出其解析式.
(2)先求出A、B两点的坐标,设出P点坐标,根据对应角相等的情况,列出两组比例式解答.
解答:解:(1)可设y=a(x-4)2-1,(2分)
∵交y轴于点C(0,3),
∴3=16a-1,(3分)
∴a=
∴抛物线的解析式为y=(x-4)2-1,
即∴y=x2-2x+3.(4分)

(2)存在.(5分)
当y=0,则(x-4)2-1=0,
∴x1=2,x2=6,(6分)
∴A(2,0),B(6,0),
设P(0,m),则OP=|m|在△AOC与△BOP中,
①若∠OCA=∠OBP,则△BOP∽△COA,
=,OP==4,
∴m=±4;(7分)
②若∠OCA=∠OPB,则△BOP∽△AOC,
=,OP==9,
∴m=±9,(7分)
∴存在符合题意的点P,其坐标为(0,4)、(0,-4)、(0,9)或(0,-9).(10分)
点评:此题不仅考查了用待定系数法求二次函数解析式,还是一道开放性题目.
要求同学们通过观察进行猜想,假设结论成立,并进行计算,验证猜想的正确性.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:填空题

(2003•宁波)已知抛物线y=x2+x+b2经过点(a,-)和(-a,y1),则y1的值是   

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2003•宁波)已知:如图,△ABC中,AB=BC=CA=6,BC在x轴上,BC边上的高线AO在y轴上,直线△APC点转动(与线段BC没有交点).设与AB、l、x轴相切的⊙O1的半径为r1,与AC、l、x轴相切的⊙O2的半径为r2
(1)当直线l绕点A转到任何位置时,⊙O1、⊙O2的面积之和最小,为什么?
(2)若,求图象经过点O1、O2的一次函数解析式.

查看答案和解析>>

科目:初中数学 来源:2003年浙江省宁波市中考数学试卷(解析版) 题型:解答题

(2003•宁波)已知:如图,△ABC中,AB=BC=CA=6,BC在x轴上,BC边上的高线AO在y轴上,直线△APC点转动(与线段BC没有交点).设与AB、l、x轴相切的⊙O1的半径为r1,与AC、l、x轴相切的⊙O2的半径为r2
(1)当直线l绕点A转到任何位置时,⊙O1、⊙O2的面积之和最小,为什么?
(2)若,求图象经过点O1、O2的一次函数解析式.

查看答案和解析>>

科目:初中数学 来源:2003年浙江省宁波市中考数学试卷(解析版) 题型:填空题

(2003•宁波)已知抛物线y=x2+x+b2经过点(a,-)和(-a,y1),则y1的值是   

查看答案和解析>>

同步练习册答案