精英家教网 > 初中数学 > 题目详情
已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?
(1)把A(-4,4)代入y=kx+1
得k=-
3
4

∴一次函数的解析式为y=-
3
4
x+1;
∵二次函数图象的顶点在原点,对称轴为y轴,
∴设二次函数解析式为y=ax2
把A(-4,4)代入y=ax2
得a=
1
4

∴二次函数解析式为y=
1
4
x2

(2)由
y=-
3
4
x+1
y=
1
4
x2

解得
x=-4
y=4
x=1
y=
1
4

B(1,
1
4
)

过A,B点分别作直线l的垂线,垂足为A',B',
则AA′=4+1=5,BB′=
1
4
+1=
5
4

∴直角梯形AA'B'B的中位线长为
5+
5
4
2
=
25
8

过B作BH垂直于直线AA'于点H,
则BH=A'B'=5,AH=4-
1
4
=
15
4

AB=
52+(
15
4
)
2
=
25
4

∴AB的长等于AB中点到直线l的距离的2倍,
∴以AB为直径的圆与直线l相切.

(3)平移后二次函数解析式为y=
1
4
(x-2)2-t,
令y=0,得
1
4
(x-2)2-t=0,x1=2-2
t
,x2=2+2
t

∵过F,M,N三点的圆的圆心一定在平移后抛物线的对称轴上,点C为定点,B要使圆面积最小,圆半径应等于点F到直线x=2的距离,
此时,半径为2,面积为4π,
设圆心为C,MN中点为E,连CE,CM,则CE=1,
在△CEM中,ME=
22-1
=
3

∴MN=2
3
,而MN=|x2-x1|=4
t

∴t=
3
4

∴当t=
3
4
时,过F,M,N三点的圆面积最小,最小面积为4π.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知ABCD在平面直角坐标系中的位置如图所示,抛物线y=ax2+bx-5经过A、B、C三点且交CD于F,线段AD所在直线的函数解析式为y=-3x+3.
①求点A、D的坐标;
②若ABCD的面积为12,求抛物线的函数解析式;
③在②的条件下,请问抛物线上是否存在点P,使得以CD、CP为邻边的平行四边形的面积是ABCD面积的
1
6
?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平移二次函数y=2x2的图象,使它经过(-1,0),(2,-6)两点.
(1)求这时图象对应的函数关系式.
(2)求出抛物线的顶点坐标和对称轴.
(3)画出该函数的图象.(温馨提示:把坐标系画全,可要记住列表哟)
x-10123
y0-6-8-60
(4)x为何值时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,A(-1,0),B(3,0).
(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;
(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;
(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CPx轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:以原点O为圆心、5为半径的半圆与y轴交于A、G两点,AB与半圆相切于点A,点B的坐标为(3,yB)(如图1);过半圆上的点C(xC,yC)作y轴的垂线,垂足为D;Rt△DOC的面积等于
3
8
xC2
(1)求点C的坐标;
(2)①命题“如图2,以y轴为对称轴的等腰梯形MNPQ与M1N1P1Q1的上底和下底都分别在同一条直线上,NPMQ,PQP1Q1,且NP>MQ.设抛物线y=a0x2+h0过点P、Q,抛物线y=a1x2+h1过点P1、Q1,则h0>h1”是真命题.请你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)为例进行验证;
②当图1中的线段BC在第一象限时,作线段BC关于y轴对称的线段FE,连接BF、CE,点T是线段BF上的动点(如图3);设K是过T、B、C三点的抛物线y=ax2+bx+c的顶点,求K的纵坐标yK的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=-
3
8
x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;
(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一网球从斜坡的点O抛出,网球的抛物线为y=4x-
1
2
x2
,斜坡OA的坡度i=1:2,则网球在斜坡的落点A的垂直高度是(  )
A.2B.3.5C.7D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PEx轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于
7
2
时点P的坐标.

查看答案和解析>>

同步练习册答案