分析 (1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可得出答案;
(2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得(4a)2+(3a)2=252,再解即可.
解答 (1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
$\left\{\begin{array}{l}{∠ADC=∠CEB}\\{∠DAC=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB(AAS),
∴DC=BE;
(2)解:由题意得:
∵一块墙砖的厚度为a,
∴AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,
在Rt△ACD中:AD2+CD2=AC2,
∴(4a)2+(3a)2=252,
∵a>0,
解得:a=5,
答:砌墙砖块的厚度a为5cm.
点评 此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com