【题目】如图在中,,为边上一点,且,过作,内切于四边形,则的值为( )
A. B. C. D.
【答案】D
【解析】
先由DE∥BC,根据平行线分线段成比例定理得出BC=3DE,根据同一底上的两个角相等的梯形是等腰梯形证明四边形BCED是等腰梯形,则BD=CE,再作等腰梯形BCED的高DF、EG,设DE=a,根据圆外切四边形及等腰梯形的性质得出BD=CE=2a,然后解Rt△BDF,即可求出sinB的值.
解:∵DE∥BC,BD=2AD,
∴,
∴BC=3DE.
∵AB=AC,
∴∠B=∠C,
∵DE∥BC,BC≠DE,
∴四边形BCED是等腰梯形,
∴BD=CE.
作等腰梯形BCED的高DF、EG,则四边形DEGF是矩形,BF=CG.
设DE=a,则BC=3DE=3a,BF=CG==a.
∵⊙O内切于四边形BCED,
BD+CE=DE+BC=a+3a=4a,
∴BD=CE=2a.
在Rt△BDF中,∵∠BFD=90°,
∴DF===a,
∴sinB===.
故选:D.
科目:初中数学 来源: 题型:
【题目】(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数.
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与轴交于、两点,与轴交于点,.
(1)若,函数图象与轴只有一个交点,求的值;
(2)若,,设点的横坐标为,求证:;
(3)若,,问是否存在实数,使得在时,随的增大而增大?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表:
时间(天) | 1 | 3 | 6 | 10 | 36 | … |
日销售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究 这种商品的有关问题.
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC与BD相交于O点,AB=5,AC=6,过D点作DE//AC交BC的延长线于E点
(1)求△BDE的周长
(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.
(1)当k=2时,求两条直线与x轴围成的△BDE的面积;
(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为时.
①求k的值;
②若m=a+b,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地高速铁路建设成功.试运行期间,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,根据图象分析出以下信息:①甲乙两地相距1000千米;②动车从甲地到乙地共需要4个小时;③表示的实际意义是动车的速度;④普通列车的速度是千米/小时;⑤动车到达乙地停留2小时后返回甲地,在普通列车出发后7.5小时和动车再次相遇.以上信息正确的是( )
A.①②④B.①③④⑤C.①②④⑤D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,长方形OABC,点A,C分别在y轴,x轴的正半轴上,OA=6,OC=3.∠DOE=45°,OD,OE分别交BC,AB于点D,E,且CD=2,则点E坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且ED=AD.
(1)求证:BE∥AC;
(2)求∠CAD的大小;
(3)求点A到BC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com