精英家教网 > 初中数学 > 题目详情
7.已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.

分析 根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.

解答 解:∵OA⊥OC,
∴∠AOC=90°,
∵∠AOB:∠AOC=2:3,
∴∠AOB=60°.
因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.
①当在∠AOC内时,∠BOC=90°-60°=30°;
②当在∠AOC外时,∠BOC=90°+60°=150°.
综上所述,∠BOC的度数为30°或150°.

点评 此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.结合图形,分类讨论是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.已知关于x的方程x2-4x+m=0有两个不相等的实数根,那么m的取值范围是m<4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.计算:$\sqrt{7}$×$\root{3}{7}$×$\root{6}{7}$═7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x、y的方程组$\left\{\begin{array}{l}x+y=-m-7\\ x-y=3m+1\end{array}\right.$的解满足x≤0,y<0.
(1)用含m的代数式分别表示x和y;
(2)求m的取值范围;
(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在?ABCD中,BE⊥AB交对角线AC于点E,若∠2的度数为110°,则∠1=20°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,正方形ABCD的对角线AC、BD交于点O,AE=BF.求证:∠ACF=∠DBE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知A(1,-2)、B(-1,2)、E(2,a)、F(b,3),若将线段AB平移至EF,点A、E为对应点,则a+b的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知a=$\sqrt{3}$-$\sqrt{2}$,b=$\sqrt{3}$+$\sqrt{2}$,求a2+3ab+b2-a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)计算:$\frac{a-b}{2a+2b}$•$\frac{{a}^{2}+2ab+{b}^{2}}{{a}^{2}-{b}^{2}}$
(2)解方程:$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

同步练习册答案