A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
分析 根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.
解答 解:连接EG,
∵点E是边CD的中点,
∴DE=CE,
∵将△ADE沿AE折叠后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
在Rt△ECG和Rt△EFG中,
$\left\{\begin{array}{l}{EG=EG}\\{CE=EF}\end{array}\right.$,
∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
设CG=a,
∵$\frac{CG}{BG}$=$\frac{1}{4}$,
∴GB=4a,
∴BC=CG+BG=a+4a=5a,
在矩形ABCD中,AD=BC=5a,
∴AF=5a,
AG=AF+FG=5a+a=6a,
在Rt△ABG中,AB=$\sqrt{A{G}^{2}-B{G}^{2}}$=$\sqrt{(6a)^{2}-(4a)^{2}}$=2$\sqrt{5}$a,
∴$\frac{AD}{AB}$=$\frac{5a}{2\sqrt{5}a}$=$\frac{\sqrt{5}}{2}$.
故选:B.
点评 本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 48盆 | B. | 49盆 | C. | 50盆 | D. | .51盆 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com