精英家教网 > 初中数学 > 题目详情
(2010•丽江)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

【答案】分析:(1)根据A、B的坐标,可求得OA、OB的长,在Rt△ABC中,OC⊥AB,利用射影定理即可求得OC的值,从而得到C点的坐标.
(2)已知了抛物线上的三点坐标,可利用待定系数法求得抛物线的解析式.
(3)此题应分段考虑:
①当0≤t≤1时,直线l扫过△ABC的部分是个直角三角形,设直线l与AC、AB的交点为M、N,易证得△AMN∽△ACO,根据相似三角形所得比例线段即可求得MN的值,从而利用三角形的面积公式求得S、t的函数关系式;
②当1<t≤5时,直线l扫过△ABC的部分是个多边形,设直线l与BC、AB的交点为M、N,同①可求得MN的长,即可得到△BMN的面积表达式,那么△ACB、△BMN的面积差即为直线l扫过部分的面积,由此求得S、t的函数关系式.
解答:解:(1)已知A(-1,0),B(4,0),则OA=1,OB=4;
在Rt△ABC中,CO⊥AB,
由射影定理得:OC2=OA•OB=4,
即OC=2,
故C(0,-2).

(2)设抛物线的解析式为:y=a(x+1)(x-4),
依题意有:a(0+1)(0-4)=-2,a=
故抛物线的解析式为:y=(x+1)(x-4)=x2-x-2.

(3)①当0≤t≤1时,由题意知:AM=t;
∵直线l∥OC,且OC=2OA,
∴MN=2AM=2t;
故S=t•2t=t2
②当1<t≤5时,由于AM=t,AB=5,则BM=5-t;
∵直线l∥OC,且OB=2OC,
∴MN=BM=
故S=×5×2-×=-t2+t-
综上可知:S、t的函数关系式为:
S=
点评:此题主要考查了直角三角形的性质、相似三角形的性质、二次函数解析式的确定、图形面积的求法等知识;(3)题中,一定要根据直线l的不同位置来分类讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2010•丽江)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、B的坐标分别为A(-4,0)、B(-4,2).
(1)现将矩形OABC绕点O顺时针方向旋转90°后得到矩形OA1B1C1,请画出矩形OA1B1C1
(2)画出直线BC1,并求直线BC1的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省临沧中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、B的坐标分别为A(-4,0)、B(-4,2).
(1)现将矩形OABC绕点O顺时针方向旋转90°后得到矩形OA1B1C1,请画出矩形OA1B1C1
(2)画出直线BC1,并求直线BC1的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省迪庆中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省大理中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

查看答案和解析>>

同步练习册答案