精英家教网 > 初中数学 > 题目详情

若()2,则a满足的条件是

[  ]

A.任意数

B.非负数

C.非正数

D.0或1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知⊙O1、⊙O2的半径不相等,⊙O1的半径长为3,若⊙O2上的点A满足AO1=3,则⊙O1与⊙O2的位置关系是(  )

A.相交或相切      B.相切或相离   C.相交或内含      D.相切或内含

查看答案和解析>>

科目:初中数学 来源:2013届江苏省南京市鼓楼区中考二模数学试卷(带解析) 题型:解答题

【提出问题】
如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?
【探究过程】
小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?
如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.
以下是几位同学的对话:
A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.
B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.
(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)
【解决问题】
根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省南京市鼓楼区中考二模数学试卷(解析版) 题型:解答题

【提出问题】

如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?

【探究过程】

小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?

如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.

以下是几位同学的对话:

A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.

B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.

(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)

【解决问题】

根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

 

查看答案和解析>>

科目:初中数学 来源:2015届江苏扬州江都七年级3月月考数学试卷(解析版) 题型:解答题

阅读下列材料,并解决后面的问题.

材料:一般地,n个相同的因数相乘,记为an.如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若anba>0且a≠1,b>0),则n叫做以a为底的对数,记为logab(即logabn).若34=81,则4叫做以3为底81的对数,记为log381(即log381=4).问题:

(1)计算以下各对数的值:log24=________,log216=________,log264=________;

(2)观察(1)中三数4,16,64之间满足怎样的关系式?log24,log216,log264之间又满足怎样的关系式?

(3)由(2)的结果,你能归纳出一个一般性的结论吗?logaMlogaN=________(a>0且a≠1,M>0,N>0);

(4)根据幂的运算法则:an·amanm以及对数的含义证明上述结论。

 

查看答案和解析>>

同步练习册答案