精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点Q从C开始沿CD边向D移动,速度是每秒1厘米,点P从A开始沿AB向B移动,速度是点Q速度的a倍,如果点P,Q分别从A,C同时出发,当其中一点到达终点精英家教网时运动停止.设运动时间为t秒.已知当t=
32
时,四边形APQD是平行四边形.
(1)求a的值;
(2)线段PQ是否可能平分对角线BD?若能,求t的值,若不能,请说明理由;
(3)若在某一时刻点P恰好在DQ的垂直平分线上,求此时t的值.
分析:(1)利用平行四边形的性质,直接的出a的值;
(2)运用三角形的全等,得出△DOQ≌△BOP,即可得出DQ=BP,从而得出答案;
(3)过点C、D作CN⊥AB,DM⊥AB,交AB于点M、N,得出Rt△DAM≌Rt△CBN,再利用垂直平分线的性质以及矩形性质得出DM=NP,从而求出t.
解答:解:(1)∵四边形APQD是平行四边形
∴6-
3
2
=
3
2
a
精英家教网
即:a=3;

(2)若线段PQ平分对角线BD,即DO=BO,
在△DOQ和△BOP中,
∠QDO=∠OBP
DO=OB
∠DOQ=∠POB

∴△DOQ≌△BOP(ASA)
∴DQ=BP
即:6-t=12-3t,
解得:t=3;

(3)分别过点C、D作CN⊥AB,DM⊥AB,交AB于点M、N
可得:四边形DMNC是矩形,
∴∠AMD=∠CNB=90°,AD=BC,DM=CN,
在Rt△DAM和Rt△CBN中
AD=BC
DM=CN
精英家教网
∴Rt△DAM≌Rt△CBN(HL),
∴AM=
12-6
2
=3
∵点P在DQ的垂直平分线EP上
∴PD=PQ,DE=
1
2
DQ,四边形DEPM是矩形
∴DE=PM,
即:
6-t
2
=3t-3

解得:t=
12
7
点评:此题主要考查了平行四边形的性质,垂直平分线的性质和全等三角形的判定等知识,题目综合性较强,考查知识比较全面,证明线段相等经常运用证明三角形全等解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案