精英家教网 > 初中数学 > 题目详情

三角形的面积为4,周长为10,则这个三角形的内切圆半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

提出问题:如图,有一块分布均匀的等腰三角形蛋糕(AB=BC,且BC≠AC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.尝试解决:
(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.
精英家教网
(2)小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪一模)如图①,A,D分别在x轴,y轴上,AB∥y轴,DC∥x轴.点P从点D出发,以1个单位长度/秒的速度,沿五边形OABCD的边匀速运动一周,若顺次连接P,O,D三点所围成的三角形的面积为S,点P运动的时间为t秒,已知S与t之间的函数关系如图②中折线O′EFGHM所示.
(1)点B的坐标为
(8,2)
(8,2)
;点C的坐标为
(5,6)
(5,6)

(2)若直线PD将五边形OABCD的周长分为11:15两部分,求PD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

提出问题:爸爸出差回家带了一个分布均匀的等腰三角形蛋糕礼物给儿子(如图1,AB=BC,且BC≠AC),在蛋糕的边缘均匀分布着巧克力,双胞胎儿子大毛和小毛决定只切一刀将这块蛋糕平分吃(要求分得的蛋糕和巧克力质量都一样).

背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.
尝试解决:
(1)大毛很快就想到了一条分割直线,而且用尺规作图作出.请你帮大毛在图1中作出这条“等分积周线”,从而平分蛋糕.
(2)小毛觉得大毛的方法很好,所以自己模仿着在蛋糕上过点C画了一条直线CD交AB于点D.你觉得小毛会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(用图2说明)
(3)若AB=BC=5cm,AC=6cm,如图3,你能找出几条△ABC的“等分积周线”,请分别画出,并简要说明确定的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,A,D分别在x轴,y轴上,AB∥y轴,DC∥x轴.点P从点D出发,以1个单位长度/秒的速度,沿五边形OABCD的边匀速运动一周,若顺次连接P,O,D三点所围成的三角形的面积为S,点P运动的时间为t秒,已知S与t之间的函数关系如图②中折线O′EFGHM所示.
(1)点B的坐标为______;点C的坐标为______;
(2)若直线PD将五边形OABCD的周长分为11:15两部分,求PD的解析式.
作业宝

查看答案和解析>>

同步练习册答案