精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD(四个角都是直角,四条边都相等)的边长为1,AB,AD上各有一点P、Q,△APQ的周长为2,求∠PCQ.为了解决这个问题,我们在正方形外以BC和AB的延长线为边作△CBE,使得△CBE≌△CDQ.
(1)△CBE可以看成是由△CDQ怎样运动变化得到的?请你描述这一运动变化;
(2)图中PQ与PE的长度是相等的.请你说明理由;
(3)请用(1)或(2)中的结论说明△PCQ≌△PCE;
(4)请用以上的结论,求∠PCQ的度数.

解:(1)△CBE可以看成是由△CDQ沿逆时针旋转90°得到的.

(2)∵AQ=1-DQ=1-BE,AP=1-BP,
又∵AP+AQ+PQ=2,
∴1-BE+1-BP+PQ=2,即2-PE+PQ=2,
∴PE=PQ.

(3)∵PE=PQ,QC=EC,PC=PC,
∴△PCQ≌△PCE(SSS);
(4)∵△PCQ≌△PCE,
∴∠PCQ=∠PCE,
又∵∠BCE=∠QCD,
∴∠QCD+∠PCB=∠PCQ,
又∵∠DCB=90°,
∴∠PCQ=×90°=45°.
分析:(1)△CBE可以看成是由△CDQ旋转得到的.
(2)易知AQ=1-DQ=1-BE,AP=1-BP,又有△APQ的周长为2,可求出PQ=PE.
(3)根据SSS判定△PCQ≌△PCE.
(4)利用△PCQ≌△PCE得出∠PCQ=∠PCE,又有∠BCE=∠QCD,得出∠PCQ的度数是∠DCB度数的一半.
点评:本题考查了图形的旋转、全等三角形的判定、全等三角形的性质、正方形的性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案