分析 (1)利用矩形的性质得出∠CAE=∠ACF,∠CFO=∠AEO,进而求出△AOE≌△COF(AAS),得出答案即可;
(2)首先求出∠BAC=30°,进而得出∠BEF=2∠OBE,利用AB=$\sqrt{A{C}^{2}-B{C}^{2}}$求出即可.
解答 (1)证明:∵四边形ABCD是矩形,
∴AB∥CD,
∴∠CAE=∠ACF,∠CFO=∠AEO,
在△AOE和△COF中,
$\left\{\begin{array}{l}{∠CAE=∠ACF}\\{∠CFO=∠AEO}\\{AE=CF}\end{array}\right.$,
∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:连接OB,
∵BF=BE,OE=OF,
∴BO⊥EF,
由(1)知,△AOE≌△COF,
∴OA=OC,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴BO=$\frac{1}{2}$AC=OA,
∴∠BAC=∠OBA,
又∠BEF=2∠BAC,
∴∠BEF=2∠OBE,
而Rt△OBE中,∠BEO+∠OBE=90°,
∴∠BAC=30°,
∴AC=2BC=2×4$\sqrt{3}$=8$\sqrt{3}$,
∴AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=$\sqrt{(8\sqrt{3})^{2}-(4\sqrt{3})^{2}}$=12.
点评 此题主要考查了矩形的性质以及勾股定理和全等三角形的判定与性质等知识,得出△AOE≌△COF(AAS)是解题关键.
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | ±$\sqrt{3}$ | D. | ±3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 当∠ABC=90°时,它是矩形 | B. | 当AO=CO,BO=DO时,它是菱形 | ||
C. | 当AC⊥BD时,它是菱形 | D. | 当AC=BD且AC⊥BD时,它是正方形 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (1,0) | B. | (2,0) | C. | (3,0) | D. | (4,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com