精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,弦BC=9,连接AC,D是圆周上一点,连接DB、DC,且tan∠BDC=,求⊙O的直径AB的长.

【答案】分析:由圆周角定理得∠A=∠D,由直径对的圆周角是直角知,∠ACB=90°,所以AC=BC÷tanA=12,由勾股定理求得AB=15.
解答:解:∵∠A与∠D对的弧相等,
∴∠A=∠D,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴tanA=BC:AC=3:4,
∵BC=9,
∴AC=12,
在Rt△ABC中,AB==15.
点评:本题利用了圆周角定理,直径对的圆周角是直角,直角三角形的性质,正切的概念,勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案