精英家教网 > 初中数学 > 题目详情
已知:关于的一元二次方程
(1)求证:方程有两个实数根;
(2)设m<0,且方程的两个实数根分别为(其中),若是关于m的函数,且,求这个函数的解析式。

(1)证明:∵是关于x的一元二次方程,
         ∴
         ∵
         ∴原方程有两个实数根。
(2)解:由求根公式,得
        ∴ x=m+1或x=1,
   ∵ m<0,
        ∴ m+1<1,
   ∵ , 
        ∴x1=m+1, x2=1,
        ∴
      即(m<0)为所求的函数解析式。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

1.⑴ 求出一元二次函数的关系式;

2.⑵点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;

3.⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

【小题1】⑴ 求出一元二次函数的关系式;
【小题2】⑵ 为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
【小题3】⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省仪征市九年级第二次模拟考试数学试卷(带解析) 题型:解答题

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若 的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是            时, 为直角三角形.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省泰州市永安初级中学九年级下学期第二次涂卡训练数学试卷(带解析) 题型:解答题

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是           时,为直角三角形.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省泰州市九年级下学期第二次涂卡训练数学试卷(解析版) 题型:解答题

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;

(2)点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;

(3)在(2)的条件下,当点坐标是           时,为直角三角形.

 

查看答案和解析>>

同步练习册答案