【题目】(2017浙江省嘉兴市,第20题,8分)如图,一次函数()与反比例函数()的图象交于点A(﹣1,2),B(m,﹣1).
(1)求这两个函数的表达式;
(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.
【答案】(1),y=﹣x+1;(2)n=或.
【解析】试题分析:(1)利用待定系数法即可解决问题;
(2)分三种情形讨论:①PA=PB,② AP=AB,③BP=BA.分别解方程即可解决问题;
试题解析:(1)把A(﹣1,2)代入,得到k2=﹣2,∴反比例函数的解析式为.
∵B(m,﹣1)在上,∴m=2,由题意得:,解得:,∴一次函数的解析式为y=﹣x+1.
(2)∵A(﹣1,2),B(2,﹣1),∴AB=,分三种情况讨论:
①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,∵n>0,∴n=0不合题意舍弃.
②当AP=AB时,22+(n+1)2=()2,∵n>0,∴n=﹣1+.
③当BP=BA时,12+(n﹣2)2=()2,∵n>0,∴n=2+.
综上所述,n=或.
科目:初中数学 来源: 题型:
【题目】下列说法正确的个数是( )
(1)若,则
(2)若,则
(3)若,则
(4)若两个角互补,则这两个角是邻补角
(5)有公共顶点且有一条公共边的两个角是邻补角
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作矩形”的尺规作图过程,已知:
求作:矩形
作法:如图,
①作线段的垂直平分线角交于点;
②连接并延长,在延长线上截取
③连接
所以四边形即为所求作的矩形
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下边的证明:
证明: ,,
四边形是平行四边形( )(填推理的依据)
四边形是矩形( )(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOC与∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.
(1)若∠AOD=75°,求∠AOE的度数.
(2)若∠DOE=54°,求∠EOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省温州市)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数(k≠0)的图象恰好经过点A′,B,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BDDF,连接CF、BE.
(1)求证:DBDE;
(2)求证:直线CF为⊙O的切线;
(3)若CF4,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是_____.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离.
(3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B两点相距4个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.
(1)求出该反比例函数解析式;
(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;
(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com