精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为


  1. A.
    16
  2. B.
    14
  3. C.
    20
  4. D.
    18
B
分析:先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.
解答:∵△ABC中,∠C=90°,AB=10,AC=6,
∴BC===8,
∵DE是线段AB的垂直平分线,
∴AD=BD,
∴AD+CD=BD+CD,即AD+CD=BC,
∴△ACD的周长=AC+CD+AD=AC+BC=6+8=14.
故选B.
点评:本题考查的是勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案