精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=______cm.
∵PB是⊙O的切线,
∴∠ABP=90°,
∵AB=3cm,PB=4cm,
∴AP=
AB2+BP2
=
32+42
=5;
∵AB是⊙O的直径,
∴∠ACB=90°,
即BC为△ABP的高;
1
2
×AB×BP=
1
2
×AP×BC,
1
2
×3×4=
1
2
×5×BC,
∴BC=
12
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<BC.设AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的两根.求:
①△COD的面积;
②CD所在直线的解析式;
③切点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连接BO、ED,有BOED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)若⊙O的半径为5,sin∠DFE=
3
5
,求EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△AOB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线;
(2)求证:ABCD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2
3
cm,AB=6cm,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是(  )
A.0<x≤
2
B.l<x≤
2
C.1≤x<
2
D.x>
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠D=30°.
(1)AD是⊙O的切线吗?说明理由;
(2)若OD⊥AB,BC=5,求AD的长;
(3)在(2)的前提下,连接BD,则BD和⊙O及AD有何关系?简要说明理由.

查看答案和解析>>

同步练习册答案