精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)已知CD=4cm,求AC的长;
(2)求证:AB=AC+CD.
分析:(1)根据角平分线的性质可知CD=DE=4cm,由于∠C=90°,故∠B=∠BDE=45°,△BDE是等腰直角三角形,由勾股定理得可得BD,AC的值.
(2)由(1)可知:△ACD≌△AED,AC=AE,BE=DE=CD,故AB=AE+BE=AC+CD.
解答:解:(1)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,
∴DE=CD=4cm,
又∵AC=BC,
∴∠B=∠BAC,
又∵∠C=90°,
∴∠B=∠BDE=45°,
∴BE=DE=4cm.
在等腰直角三角形BDE中,由勾股定理得,BD=4
2
cm,
∴AC=BC=CD+BD=4+4
2
(cm).

(2)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,
∴∠ADE=∠ADC,
∴AC=AE,
又∵BE=DE=CD,
∴AB=AE+BE=AC+CD.
点评:本题考查的是角平分线的性质,等腰直角三角形的性质,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案