精英家教网 > 初中数学 > 题目详情
8、已知y轴上的点P到原点的距离为5,则点P的坐标为(  )
分析:首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.
解答:解:由题中y轴上的点P得知:P点的横坐标为0;
∵点P到原点的距离为5,
∴点P的纵坐标为±5,
所以点P的坐标为(0,5)或(0,-5).
故选B.
点评:此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,抛物线y=ax2-2ax-3与x轴交于A(-1,0)和B两点,与y轴交于点C,其顶点为M.
(1)求a的值和M的坐标;
(2)将抛物线平移,使其顶点在射线CB上,且A点的对应点为A′,若S△A'AC=9,求平移后的抛物线的解析式;
(3)如图2,将原抛物线x轴下方的部分沿x轴翻折到x轴上方得到新图象,当直线y=kx-2k+5与新图象有三个公共点时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,抛物线y=ax2+bx+c与x轴交于点A(数学公式,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比数学公式(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:数学公式数学公式,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源:2013年福建省三明市宁化县初中学业质量检查数学试卷(解析版) 题型:解答题

已知:如图,抛物线y=ax2+bx+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果精确到0.001)

查看答案和解析>>

同步练习册答案