精英家教网 > 初中数学 > 题目详情

【题目】如图,点D,E分别在AB,AC上,DE∥BC,EF平分∠DEC,交BC于点F,且∠ABC=55°,∠C=70°.

(1)求∠DEF的度数;

(2)请判断EF与AB的位置关系,并说明理由.

【答案】(1)55°;(2)见解析.

【解析】

(1)根据平行线的性质即可得出答案;(2)由平行线的性质得出∠EFC=∠DEF=55°,证出∠EFC=∠ABC,即可得出EF∥AB.

(1)∵DE∥BC,∠C=70°,

∴∠DEC=180°-∠C=110°.

又∵EF平分∠DEC,

∴∠DEF=∠CEF=∠DEC=55°.

(2)EF∥AB.理由:由(1)得∠DEF=55°.

又∵DE∥BC,∴∠EFC=∠DEF=55°.

∵∠ABC=55°,∴∠EFC=∠ABC=55°,

∴EF∥AB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:

(1)(3pq)2

(2)x3(4x)2x

(3)(m4m÷m2n)·mn

(4)(2)232÷(3.144+π)0

(5)(a2)3·(a2)4÷(-a2)5

(6)[2381×(1)2]×.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).请你说明上述性质的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1

(3)写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D是BC边上的一点,∠B=44°,∠BAD=28°,将ABD沿AD折叠得到AED,AE与BC交于点F.

(1)填空:∠AFC=   度;

(2)EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某天放学后,小红步行,小丽骑自行车沿同一条笔直的马路到图书馆看书,图中线段OABC分别表示小红、小丽离开学校的路程s(米)与小红所用的时间t(分钟)的函数关系,根据图象解答下列问题:

(1)小丽比小红迟出发   分钟,小红步行的速度是   /分钟;(直接写出结果)

(2)两人在路上相距不超过200米的时间有多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线经过原点和点,点的坐标为.

(1)求直线所对应的函数解析式;

(2)当P在线段OA上时,设点横坐标为,三角形的面积为,写出关于的函数解析式,并指出自变量的取值范围;

(3)当P在射线OA上时,在坐标轴上有一点,使正整数),请直接写出点的坐标(本小题只要写出结果,不需要写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:

(1)求乙车所行路程y与时间x的函数关系式;

(2)求两车在途中第二次相遇时,它们距出发地的路程;

(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)

查看答案和解析>>

同步练习册答案