精英家教网 > 初中数学 > 题目详情
9.计算
(1)(-$\frac{1}{4}$)-2-(-2016)0+($\frac{2}{3}$)11•(-1$\frac{1}{2}$)12
(2)(3x-2)2+(-3+x)(-x-3)

分析 (1)原式利用零指数幂、负整数指数幂法则,以及幂的乘方与积的乘方运算法则计算即可得到结果;
(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.

解答 解:(1)原式=16-1+[$\frac{2}{3}$×(-1$\frac{1}{2}$)]11×(-1$\frac{1}{2}$)=16$\frac{1}{2}$;
(2)原式=9x2-12x+4+9-x2=8x2-12x+13.

点评 此题考查了平方差公式,实数的运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.在等腰△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程x2+mx+1-m=0的两个实数根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为α(0°<α<90°),PM,PN分别交AB,BC于E,F两点,连接EF交OB于点G,下列结论中错误的是(  )
A.OF=OE
B.BE+BF=$\sqrt{2}$OA
C.在旋转的过程中,当△BEF与△COF的面积之和最大时,AE=$\frac{3}{4}$
D.AE•BE=BO•BG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在?ABCD中,点E、F分别是BC,AD上的点,且BE=DF,对角线AC⊥AB.
(1)求证:四边形AECF是平行四边形;
(2)①当E为BC的中点时,求证:四边形AECF是菱形;
②若AB=6,BC=10,当BE长为3.6时,四边形AECF是矩形.
③四边形AECF有可能成为正方形吗?答:没有.(填“有”或“没有”)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现以下两种情况:
情况1:如果每只水果每降价1元,那么每周可多卖出25只;
情况2:如果每只水果每涨价1元,那么每周将少卖出10只.
(1)根据情况1,如何定价,才能使一周销售收入最多?
(2)如果物价局规定该种水果每只价格只能在22元~24元之间(包括22元与24元),你认为应当如何定价才能使一周销售收入最多?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:△ABC是等腰三角形,亲底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图1)
(1)求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段BA的延长线上”,其它条件不变(如图2),(1)的结论是否成立,并说明理由;
(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则$\frac{EB}{AD}$的值是多少?(直接写出结论,不要求写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图所示AB是半圆的直径,图1中,点C在半圆外;请仅用无刻度的直尺按要求画图.在图中,画出△ABC的三条高线的交点.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在正方形ABCD中,点E、F分别是BC、DC边上一点,且BE=CE,DF=2FC,连接DE,BF交于点G,连接∠DAG的平分线交DC于M,若BG=$\sqrt{10}$,则四边形AGFM的面积是$\frac{85}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?

查看答案和解析>>

同步练习册答案