精英家教网 > 初中数学 > 题目详情
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,该山坡的坡度为
12
,且O,A,B在同一条直线上.
求:(1)电视塔OC的高度;
(2)此人所在位置点P的铅直高度;
(3)点P到电视塔所在直线OC的距离.(测倾器的高度忽略不计,结果保留根号形式)
分析:(1)在直角△AOC中,利用三角函数即可求解;
(2)在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决;
(3)根据OE=AE+OA,求得AE即可得到.
解答:解:(1)作PE⊥OB于点E,PF⊥CO于点F,
在Rt△AOC中,AO=100,∠CAO=60°,
∴CO=AO•tan60°=100
3
(米)

(2)设PE=x米,
∵tan∠PAB=
PE
AE
=
1
2

∴AE=2x.
在Rt△PCF中,
∠CPF=45°,CF=100
3
-x,PF=OA+AE=100+2x,
∵PF=CF,
∴100+2x=100
3
-x,
解得x=
100
3
-100
3
(米).

(3)AE=2PE=
200
3
-200
3
米,
则OE=AE+OA=
200
3
-200
3
+100=
200
3
+100
3
米.
点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为
1
2
(即tan∠PAB=
1
2
),且O,A,B在精英家教网同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江模拟)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•营口)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为
1
2
(即tan∠PCD=
1
2
).
(1)求该建筑物的高度(即AB的长).
(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏镇江九年级5月中考模拟数学试卷(解析版) 题型:解答题

如图,某人在山坡坡脚处测得电视塔尖点的仰角为,沿山坡向上走到处再测得点的仰角为,已知米,山坡坡度且O 、A、B在同一条直线上.求电视塔的高度以及此人所在位置点的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

 

查看答案和解析>>

同步练习册答案