解:(1)∵点A(﹣3,0),C(1,0), ∴AC=4,BC=tan∠BAC×AC=×4=3,B点坐标为(1,3), 设过点A,B的直线的函数表达式为y=kx+b, 由得,, ∴直线AB的函数表达式为 (2)如图,过点B作BD⊥AB,交x轴于点D, 在Rt△ABC和Rt△ADB中, ∵∠BAC=∠DAB, ∴Rt△ABC∽Rt△ADB, ∴D点为所求, 又tan∠ADB=tan∠ABC=, ∴CD=BC÷tan∠ADB=3÷, ∴OD=OC+CD=,∴D(,0); (3)这样的m存在. 在Rt△ABC中,由勾股定理得AB=5, 如图1, 当PQ∥BD时,△APQ∽△ABD,则, 解得, 如图2, 当PQ⊥AD时,△APQ∽△ADB, 则, 解得. |
科目:初中数学 来源: 题型:
3 |
2 |
16 |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
1 | 3 |
查看答案和解析>>
科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题
已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.
(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.
查看答案和解析>>
科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com