精英家教网 > 初中数学 > 题目详情

在正方形ABCD中:
(1)如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M.求证:AE=BF.
(2)如图②,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M.那么GE、HF相等吗?证明你的结论.
(3)若将②中的条件“GE⊥HF”改为GE=HF,那么GE、HF有什么位置关系?证明你的结论.
(4)如图③,在等边三角形ABC中,点E、F分别在BC、CA上,且BE=CF,你能猜想∠AMF的度数吗?证明你的结论.

(1)证明:∵AE⊥BF,
∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,
∴∠BAE=∠CBF,
在△BAE和△CBF中

△BAE≌△CBF(AAS),
∴AE=BF;


(2)结论:HF=GE
分别过G、H作GT⊥BC、HN⊥CD,
∴GT⊥HN,
∴∠FHN+∠HPO=90°,∠EGT+∠GPM=90°,∠GPM=∠HPO,
∴∠FHN=∠EGT,
∵HN=GT,∠GTE=∠NHF=90°,
∴△GTE≌△HNF,
∴GE=HF;

(3)结论:GE⊥HF
分别过G、H作GT⊥BC、HN⊥CD,
∵GT=HN GE=HF,
∴直角三角形HFN≌直角三角形GTE,
∴∠FHN=∠EGT,
又∵∠FHN+∠HPO=90°,
∠HPO=∠GPM,
∴∠GPM+∠EGT=90°,
∴∠GMP=90°,
∴GE⊥HF;

(4)结论:∠AMF=60°.
在△ABE和△BCF中

∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,
∴∠ABE=∠BME=60°,
∴∠AMF=∠BME=60°.
分析:有三角形的直接证明三角形全等,没三角形的构造直角三角形,利用正方形的性质证明三角形全等;对于第4问也是证明三角形全等,再用角等量代换求解.
点评:本题考查正方形的性质,全等三角形的判定和性质以及作辅助线的能力和适时等量代换的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案