【题目】若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.
【答案】
【解析】
设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.
解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:
∵△A1B1A2是等边三角形,
∴∠B1A1A2=60°,
∵顶点都在直线y=x上,设,
∴OC1=m,,
∴,
∴∠B1OC1=30°,
∴∠OB1A1=30°,
∴OA1=A1B1=2=A2B1,
∴A1C1=A1B1cos60°=1,
,
∴OC1=OA1+A1C1=3,
∴,A2(4,0),
设T1的解析式为:,
则,
∴,
∴T1:,
同理,T2的解析式为:,
T3的解析式为:,
…
则Tn的解析式为:,
故答案为:.
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
请你根据统计图解答下列问题:
(1)参加比赛的学生共有____名;
(2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A的坐标为(2,1),如果将线段OA绕点O逆时针方向旋转90°,那么点A的对应点的坐标为( )
A. (﹣1,2) B. (﹣2,1) C. (1,﹣2) D. (2,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.
求证:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即,如T(60°)=1.
(1)理解巩固:T(90°)= ,T(120°)= ;
(2)学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从P点这沿着圆锥的侧面爬行到点Q.
①求圆锥侧面展开图的扇形圆心角的数;
②求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.
(1)求证:△AED是等腰直角三角形;
(2)如图1,已知⊙O的半径为.
①求的长;
②若D为EB中点,求BC的长.
(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;② 2a-b=0;③<0;④若点为函数图象上的两点,则y1<y2,其中,正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D在AC上,将△ABD绕点B顺时针旋转90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AC=4,AD:DC=1:3时,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com