【题目】问题背景:(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F。请按图示数据填空:四边形DBFE的面积______,△EFC的面积______,△ADE的面积______。
探究发现:(2)在(1)中,若, ,DE与BC间的距离为。请证明。
拓展迁移:(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积。
【答案】 6 9 1(2)见解析(3)18
【解析】整体分析:
(1)用面积公式分别求平行四边形DBFE的面积S,△EFC的面积S1,由相似三角形的面积比等于相似比的平方求得△ABC的面积,从而求得△ADE的面积;(2)根据△ADE∽△EFC,分别用a,b,h表示出S1,S2,S的面积可求解;(3)过点G作GH∥AB交BC于点H,由△DBE≌△GHF,得△GHC的面积,由(2)的结论得四边形DBHG的面积.
解:(1)6,9,1
(2)证明:∵DE∥BC,EF∥AB,
∴四边形DBFE为平行四边形,∠AED=∠C,∠A=∠CEF,∴△ADE∽△EFC,
∴,∵,∴,
∴,而S=ah,∴S2=4S1S2;
(3)解:如图,过点G作GH∥AB交BC于点H,则四边形DBHG为平行四边形,
∴∠GHC=∠B,BD=HG,DG=BH,∵四边形DEFG为平行四边形,
∴DG=EF,∴BH=EF,∴BE=HF,
∴△DBE≌△GHF,∴△GHC的面积为5+3=8,
由(2)得,四边形DBHG的面积为,∴△ABC的面积为2+8+8=18。
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和点B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:
①当x>0时,y>0;
②若a=﹣1,则b=4;
③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;
④若AB>2,则m<﹣1.
其中正确判断的序号是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是菱形ABCD的对角线AC上一动点,过P作垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线 y= -x+5交x轴于A,交y轴于B,直线y=2x﹣4与x轴于D,与直线AB相交于点C.
(1)求点C的坐标;
(2)求四边形BODC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系 xOy 中,定义:已知图形 W 和直线 l.如果图形 W 上存在一点 Q,使得点 Q 到直线 l 的距离小于或等于 k,则称图形 W 与直线 l“k 关联”,设图形 W:线段 AB,其中点 A(t,0)、点 B(t+2, 0).
(1)线段AB的长是 ;
(2)当t=1 时,
①已知直线y=﹣x﹣1,点A到该直线的距离为 ;
②已知直线y=﹣x+b,若线段AB与该直线“关联”,求b的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与反比例函数的图象交于点,与y轴交于点B.
(1)求的值;
(2)已知=过(2,6)点,求当时x的取值范围.
(3)设点P的坐标为且,过点P作平行于x轴的直线与直线和反比例函数的图象分别交于点C,D,当C,D间距离小于或等于4时,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是几个( )
①2<2 <3;②四边形的内角和与外角和相等;③的立方根为4;④一元二次方程x2﹣6x=10无实数根;⑤若一组数据7,4,x,3,5,6的众数和中位数都是5,则这组数据的平均数也是5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算下列各题:
(1)1-4+3-0.5
(2)()×6
(3)40×(-5)-(-3)÷
(4)-14+-2×(-2)2
(5)32-(-)×+(-8)÷
(6)(-)3+
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com