精英家教网 > 初中数学 > 题目详情

已知a-b=4,ab+m2-6m+13=0,则(a+m)b的值为________.


分析:本题可将b=a-4代入关于a、b、m的等量关系式中,将13进行拆分后,可使等号左边构成两个完全平方式,根据非负数的性质可求出a、b、m的值,再将它们代入(a+m)b中求解即可.
解答:ab+m2-6m+13=0可化为ab+m2-6m+9+4=0,
即ab+(m-3)2+4=0…①;
将a-b=4转化为b=a-4…②,
②代入①得:a(a-4)+(m-3)2+4=0,
即(a-2)2+(m-3)2=0;
解得a=2;m=3.
∴b=a-4=2-4=-2;
因此(a+m)b=(2+3)-2=
故答案为
点评:本题主要考查负整数指数幂的运算,该题首先通过配方法求出未知数a、b.m的值,然后计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:
(1)AB=DC.
(2)AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AE=AC,AD=AB,∠EAD=∠CAB,求证:∠B=∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图1.若∠AOC=30°.求∠DOE的度数;
(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);
(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2;         
(2)a2+b2;               
(3)a-b.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点O是直线AB上的一点,∠BOC=40°,OD、OE分别是∠BOC、∠AOC的角平分线.
(1)求∠AOE的度数;
(2)写出图中与∠EOC互余的角;
(3)∠COE有补角吗?若有,请把它找出来,并说明理由.

查看答案和解析>>

同步练习册答案