精英家教网 > 初中数学 > 题目详情
(1)如图①,△ABC是等边三角形,D是AB上一点,以CD为一边向上作等边△ECD,连接AE,求证:∠CAE=∠CBA.
(2)在上题(1)中,当D点在AB的延长线上时,其他条件不变,如图②所示,请你补画出题意的图形,(1)的结论还成立吗?若成立,请给予证明;若不成立,请简要说明理由.
(1)证明:∵△ABC与△EDC是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC.
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE,
∴△ACE≌△BCD,
∴∠CAE=∠CBA.

(2)不成立;
因为同(1)易证△ACE≌△BCD,
所以∠CAE=∠CBD,
∠CBD与∠CBA互补,
所以∠CAE和∠CBA互补但不相等.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OMAB,ONAC,BC=10cm,则△OMN的周长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A5B5A6的边长为______,△A2012B2012A2013的边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等边三角形的边长为1,则等边三角形的高是______,面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是(  )
A.1B.1.5C.2D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.
(1)求证:∠BQM=60°;
(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然成立?若成立,给予证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为
1
2
的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的
1
2
)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则Pn-Pn-1的值为(  )
A.(
1
4
)
n-1
B.(
1
4
)
n
C.(
1
2
)
n-1
D.(
1
2
)
n

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD.有下列四个结论:
(1)∠PBC=15°;(2)ADBC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.
其中正确结论个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案