精英家教网 > 初中数学 > 题目详情
(1)如图,在?ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F、求证:FA=AB;
精英家教网
(2)已知:如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为
5
,求⊙O1的半径.
精英家教网
分析:(1)根据平行四边形的性质,可得AB∥CD,AB=CD,所以∠F=∠FCD,又由AE=DE,∠AEF=∠DEC,证得△AFE≌△DCE,问题得证;
(2)此题可以利用垂径定理求解.注意应用勾股定理求解.
解答:(1)证明:四边形ABCD是平行四边形,
∴AB=DC,AB∥DC. (2分)
∴∠FAE=AD,∠F=∠ECD.(4分)
又∵EA=ED,
∴△AFE≌△DCE,(6分)
∴AF=DC,
AF=AB.

(2)∵A(1,0)、B(5,0),精英家教网
∴AB=4,
过点O1作O1C⊥x轴于C,
∴AC=BC=
1
2
AB=2,∠O1CA=90°,
∵点O1的纵坐标为
5

∴O1C=
5

∴AO1=3.
∴⊙O1的半径为3.
点评:(1)考查了平行四边形的性质:平行四边形的对边平行且相等.还考查了全等三角形的判定与性质;
(2)此题考查了垂径定理:垂直于弦的直径平分弦及平分弦所对的两条弧,注意勾股定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE四个条件中,能证明△ABD与△ACE全等的条件顺序是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,在AB、AC上各取一点D、E,使得AE=AD,连接CD、BE相交于点O,再连接AO.若∠CAO=∠BAO,则图中全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在AB∥CD,∠A=40°,∠C=80°.求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有(  )

查看答案和解析>>

同步练习册答案