如图,已知抛物线的图象,将其向右平移两个单位后得到图象.
(1)求图象所表示的抛物线的解析式:
(2)设抛物线和轴相交于点、点(点位于点的右侧),顶点为点,点位于轴负半轴上,且到轴的距离等于点到轴的距离的2倍,求所在直线的解析式.
见解析.
【解析】
试题分析:(1)将抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,向右平移两个单位后得到图象F,
根据“左加又减,上加下减”规律,所以,图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;
(2)由抛物线y=﹣2(x﹣1)2+2,求出顶点C的坐标为(1,2).
令y=0得,﹣2(x﹣1)2+2=0,解得x=0或2,点B的坐标为(2,0).点位于轴负半轴上,所以,设A点坐标为(0,y),则y<0.又因为点A到x轴的距离等于点C到x轴的距离的2倍,即﹣y=2×2,解得y=﹣4,
所以,A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,把A(0,﹣4),B(2,0)的坐标代入,
解得,写出AB所在直线的解析式为y=2x﹣4.
试题解析:
(1)∵抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,将其向右平移两个单位后得到图象F,
∴图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;
(2)∵y=﹣2(x﹣1)2+2,
∴顶点C的坐标为(1,2).
当y=0时,﹣2(x﹣1)2+2=0,
解得x=0或2,
∴点B的坐标为(2,0).
设A点坐标为(0,y),则y<0.
∵点A到x轴的距离等于点C到x轴的距离的2倍,
∴﹣y=2×2,解得y=﹣4,
∴A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,
由题意,得,
解得,
∴AB所在直线的解析式为y=2x﹣4.
考点:1.待定系数法求直线的解析式。2. 抛物线的图象和性质
科目:初中数学 来源: 题型:
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
1 | m |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2010年湘西自治州初中毕业学业考试数学试题 题型:044
如图,已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9),
(1)求出抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴,对称,求m的值及点Q的坐标;
(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com