精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图像开口向下,与x轴的一个交点为B,顶点A在直线y=x上,O为坐标原点。
(1)证明:△AOB是等腰直角三角形;
(2)若△AOB的外接圆C的半径为1,求该二次函数的解析式;
(3)对题(2)中所求出的二次函数,在其图像上是否存在点P (点P与点A不重合),使得△POC是以PC为腰的等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由。

解:(1)∵点A在直线y=x上,
∴设点A的坐标为(m,m),
过点A作AD⊥x轴,交x轴于点D,
∵点A是二次函数图像的顶点,
∴直线AD是其对称轴,
∴点D是OB的中点,
∴OD=DB=AD,
∴△AOB是等腰直角三角形;
(2)∵△AOB是等腰直角三角形,且其外接圆C的半径为1,
∴点C是OB的中点,(即点C就是上题中的点D),
且OC=CB=1,从而CA=1,
∴点A的坐标为(1,1),
点B为(2,0),设该二次函数的解析式为:
∵B(2,0)在函数图像上,

解得:a=-1,
,即
(3)设存在点P(x,y),使得△POC是等腰三角形,
∵P(x,y)是二次函数图像上的点,

可能一:PC=PO,则,从而P();
可能二:PC=OC,则PC=1,∴,即


解得:y=0或y=1,
y=0时,点P在x轴上,△POC不存在,
y=1时,点P与点A重合,不合题意,
综上,点P()。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上精英家教网的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(-2,0)和点C(0,-8).
(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为
6
7
,0)
6
7
,0)

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象(0≤x≤3.4),关于该函数在所给自变量的取值范围内,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案