精英家教网 > 初中数学 > 题目详情
10.如图,I为△ABC的三条角平分线的交点,过I作AI的垂线交AB于点D,交AC于点E.求证:DI2=BD•CE.

分析 首先证明△ADI≌△AEI(ASA),进而得出∠BDI=∠IEC=∠BIC,即可得出△DBI∽△IBC,再求出△BIC∽△IEC,△DBI∽△EIC,即可得出答案.

解答 证明:∵AI平分∠BAC,DE⊥AI,
∴∠DAI=∠EAI.
在△ADI和△AEI中
$\left\{\begin{array}{l}{∠DAI=∠EAI}\\{AI=AI}\\{∠AID=∠AIE}\end{array}\right.$,
∴△ADI≌△AEI(ASA),
∴∠ADI=∠AEI,DI=EI,
∴∠BDI=∠IEC=90°+$\frac{1}{2}$∠BAC,
∴∠BIC=90°+$\frac{1}{2}$∠BAC,
∴∠BDI=∠IEC=∠BIC,
∵I是△ABC的内角平分线的交点,
∴∠DBI=∠CBI,
∴△DBI∽△IBC,
同理可得出:△BIC∽△IEC,
∴△DBI∽△EIC,
∴$\frac{BD}{IE}$=$\frac{ID}{EC}$,
∵DI=EI,
∴DI2=BD•CE.

点评 此题主要考查了相似三角形的判定与性质和全等三角形判定与性质,根据已知得出∠BDI=∠IEC=∠BIC是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,已知点A与点B(2,1),在抛物线C1:y=-$\frac{3}{2}$x2+bx上,过点A作AC∥y轴交OB于点C,且tan∠OAC=$\frac{1}{2}$.
(1)求b的值及点C的坐标;
(2)将抛物线C1沿y轴上下平移,平移后的抛物线C2交直线AB与点E($\frac{7}{3}$,$\frac{2}{3}$)交y轴于点F,点D(2,m)为平移后的抛物线C2上一点,点P为直线EF上一点,如果△ACO∽△PDF,求点P坐标;
(3)将抛物线C1与△ACO同时平移点A,C,O平移后分别记为A′,C′,O′,若点A′恰好落在线段AB上,△A′,C′,O′与△AOB重叠部分的面积是$\frac{3}{16}$,求平移后的抛物线C3的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在△ABC中,顶点C在AB边上的射影为D,且CD2=AD•DB,求证:△ABC是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,锐角三角形ABC中,BC=6,BC边上的高线长为4,PQRS是△ABC的内接矩形,且S矩形PQRS=$\frac{1}{4}$S△ABC,记$\frac{BS}{BA}$=λ,求λ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图是用10块完全相同的小正方体搭成的几何体.
(1)请在空白的方格中画出它的三个视图;
(2)若保持主视图和俯视图不变,最多还可以再搭3块小正方体.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)解不等式组:$\left\{\begin{array}{l}{9x+5<8x+7}\\{\frac{4}{3}+2>1-\frac{2}{3}x}\end{array}\right.$ 把解集表示在数轴上,并写出其整数解.
(2)解方程:$\frac{x+1}{x-1}-\frac{6}{{{x^2}-1}}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.取一个三角尺,在一张大纸上描出它的轮廓,然后沿三角尺的各条边不断向外翻折并随时描出它的轮廓,你会得到怎样的图案?先猜一猜,再实际做一做.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.求$\left\{\begin{array}{l}{5x+7y+3z=25}\\{3x-y-6z=2}\end{array}\right.$的自然数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,四边形ABCD中,∠ABC=120°,点F为CD中点,以AB,BD为边,AD为对角线作?ABDE,连结BE交AD于点O,且OF=BC=1,则AB的长为$\frac{\sqrt{13}-1}{2}$.

查看答案和解析>>

同步练习册答案