精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=2x2+4x﹣5,设自变量的值分别为x1、x2、x3 , 且﹣1<x1<x2<x3 , 则对应的函数值y1、y2、y3的大小关系为(
A.y1>y2>y3
B.y1<y2<y3
C.y2<y3<y1
D.y2>y3>y1

【答案】B
【解析】解:∵y=2x2+4x﹣5=2(x+1)2﹣7,
∴抛物线对称轴为直线x=﹣1,
∵﹣1<x1<x2<x3
∴在对称轴右侧,y随x的增大而增大,即y1<y2<y3 . 故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第5个图中共有点的个数是( )

A. 31 B. 46 C. 51 D. 66

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.

(1)求直线l2的函数解析式;

(2)求ADC的面积;

(3)在直线l2上是否存在点P,使得ADP面积是ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=(k-)x-3k+10(k为偶数)的图象经过第一、二、三象限,与x轴、y轴分别交于A、B两点,过点B作一直线与坐标轴围成的三角形面积为2,交x轴于点C.

(1)求该一次函数的解析式;

(2)若一开口向上的抛物线经过点A、B、C三点,求此抛物线的解析式。

(3)过(2)中的A、B、C三点作ABC,求tanABC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D(如图).

(1)求证:AC=BD;

(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若OC是∠AOB内部的一条射线,则下列式子中,不能表示“OC是∠AOB的平分线”的是(  )

A. ∠AOC=∠BOC B. ∠AOB=2∠BOC

C. ∠AOC=∠AOB D. ∠AOC+∠BOC=∠AOB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________.若以A为圆心,CO长为半径画弧交数轴于点N,则点N对应的实数为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于AB两点, A点在原点的左侧,B点的坐标为(30),与y轴交于点C0-3),点P是直线BC下方的抛物线上一动点.1)求这个二次函数的表达式

2)连结POPC,并把POC沿CO翻折,得到四边形POP’C 那么是否存在点P,使四边形POP’C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

同步练习册答案